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ABSTRACT
Parkinson’s disease (PD), the second most prevalent neurodegener-
ative condition, lacks a cure, but its symptoms can be managed. Its
complex diagnosis and assessment need ongoing monitoring, high-
lighting the potential use of digital assessment tools for enhancing
patient management, even outside the clinical settings. In this vein,
this paper proposes a smartphone-based video analysis approach
for assessing motor skills, particularly balance and posture, in indi-
viduals diagnosed with PD. In particular, the Movement Disorder
Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
ratings for items “3.8” (leg agility), “3.9” (arising from chair),“3.13”
(posture) and “3.10” (gait) are estimated by capturing and analysing
video from PD patients, while performing a Comprehensive Motor
Function Test. Specifically, a 3D pose landmark detection (skeleton
extraction) model based on the the MediaPipe Machine Learning
Platform is used and different motion features are estimated from
the captured videos that may correlate with the MDS-UPDRS as-
sessments provided by clinicians. A machine learning pipeline (eval-
uating five different ML classifiers) is then proposed to examine
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the feasibility of using these features for monitoring the balance
and posture of PD patients. Experimental results, obtained using
a cohort of 17 Greek PD patients, voluntarily participating in this
study, demonstrate that certain features have significant correla-
tion with the clinical MDS-UPDRS ratings. These promising results
showcase the potentiality of digital assessment to provide objective
representation of the PD patient’s motor skills, supporting both PD
clinical assessment and self-management. Ongoing work within the
AI-PROGNOSIS project will further validate these findings within
a larger cohort and from additional countries.
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1 INTRODUCTION
The incidence of Parkinson’s disease (PD), a progressive neurode-
generative disorder, is rapidly increasing, making it the fastest-
growing neurological condition. PD manifests with a variety of
motor symptoms, such as bradykinesia, dyskinesia, tremors, and
gait abnormalities [1]. The World Health Organization (WHO) esti-
mates that just in 2019, PD caused more than 300,000 deaths and
around 6 million disability-adjusted life years (DALYs) [2]. Unfor-
tunately, there is currently no cure for PD; however, with effective
symptom management, individuals with the condition can greatly
enhance their quality of life (QoL) [3]. Accurately identifying the
motor symptoms of PD has been considered crucial for optimizing
treatment choices and guiding clinical judgment [4]. The two pri-
mary clinical assessment tools currently utilized are the Unified
Parkinson’s Disease Rating Scale [5] and its modified version, the
MDS-UPDRS [6, 7], developed by the Movement Disorder Society
(MDS). These tests have been used to evaluate both motor and non-
motor symptoms in PD. Other scales used by clinicians include the
modified Bradykinesia rating scale (MRBS) [8], and the WHIGET
Tremor Rating Scale [9]. Nevertheless, these tests tend to be subjec-
tive and lack granularity which can cause ratings to vary [10–12].
In addition to that, they rely on observations made within clinical
settings, which may cause them to miss symptom variations and
introduce errors when measuring symptoms outside of these set-
tings [13, 14]. Considerable efforts have been made to address the
shortcomings of conventional assessment methods and enhance
the monitoring and evaluation of motor symptoms related to PD
using digital technologies [13]. Digital assessment techniques, such
as wearables, motion sensors, and smartphone apps, offer the pos-
sibility of objective, continuous motor function monitoring in both
clinical and daily situations [15]. These tools have the potential to
fundamentally change the management of PD by offering real-time
data on symptom severity and progression. This enables tailored
therapy, assessment, and early intervention strategies. The current
study is part of the AI-PROGNOSIS Horizon Europe research initia-
tive (https://www.ai-prognosis.eu/), which aims to advance digital
tools using artificial intelligence for PD risk assessment and progno-
sis. Specifically, our approach involves utilizing smartphone-based
video analysis to assess motor skills, focusing on aspects, such as
balance and posture, in individuals with PD. By evaluating video
data captured during a Comprehensive Motor Function Test, we
aim to provide clinicians with objective assessments of motor func-
tion that correlate with traditional clinical evaluations. The rest of
this paper is structured as follows: Section 2 presents the related
work, outlining existing literature on the topic. Section 3 describes
the methodologies employed and provides information about the
study participants and experimental setup. Section 4 presents the
results and the discussion, while Section 5 concludes the article.

2 RELATEDWORK
The advent of digital tools for PD assessment contributes to the
growing body of research that looks at how technology might im-
prove the management of the condition. Previous studies indicate
that tracking PD patients’ motor symptoms, medication compli-
ance, and disease progression can be accomplished effectively and

practically using a variety of digital approaches, including wear-
able sensors, smartphone apps, and telemedicine platforms [16].
Research has demonstrated, for instance, that wearable sensors are
capable of precisely measuring gait characteristics and identifying
alterations in motor function linked to PD [17, 18]. Smartphone
applications that assess tremor severity and medication response
in real time have integrated motion analysis algorithms, provid-
ing useful information to clinicians and patients alike [16]. On the
other hand, telemedicine systems allow for remote consultations
and monitoring, which makes it easier for people living in remote
or underserved locations to get specialized treatment [19]. Using
digital technologies into PD assessment is one way to improve
patient outcomes and clinical practice. Through the use of data
analytics, machine learning, and remote monitoring, researchers
and doctors can obtain a more profound understanding of how PD
develops and customizes treatment plans to each patient’s specific
requirements. Inexpensive sensors, such as cameras and smart-
phones hold promise for home-based monitoring, as highlighted
by [20, 23]. Recent advancements include the development of in-
telligent motor assessment tools and depth camera-based systems
(e.g., Microsoft Kinect) for differentiating PD stages and to capture
body motion [20–22, 24]. Additionally, smartphone-based depth
sensors and skeleton tracking in three-dimensional space, have
shown promise, offering enhanced precision and accuracy in mo-
tion analysis [25]. Video recording, coupled with pose estimation
tools, such as AlphaPose, has also been utilized to extract human
joint coordinates [25, 26]. However, to fully realize the potential
of digital health solutions for PD management, continued research
and collaboration in this sector are needed. Building upon these
technical developments, the present study aims to investigate bal-
ance and posture assessment in individuals with PD. We focus on
important MDS-UPDRS items that are essential for assessing motor
symptoms, such as leg agility, rising from a chair, walking, and
posture, by using smartphone-based video analysis. These partic-
ular motor items are important markers of posture and balance
that are closely related to the key motor aspects of PD. These se-
lected items focus on balance and posture, which are fundamental
motor features affected by PD [27]. Through the use of modified
MDS-UPDRS-related motor tests and the examination of patient
videos taken during a Comprehensive Motor Function Test, we
aim to obtain a more sophisticated knowledge and precise approxi-
mation of corresponding scores for these motor assessment items.
The proposed approach represents a significant advancement in
the assessment of this complex movement disorder beyond the
limitations of traditional clinical settings. It also holds promise for
enhancing the accuracy of PD assessment while simultaneously
increasing accessibility for patients.

3 METHODOLOGY
A smartphone-based video analysis approach was designed for
assessing motor skills, particularly focused on the assessment of
balance and posture of individuals diagnosed with PD. More specifi-
cally, the approach focuses on the automated assessment of specific
items (tests) from the MDS-UPDRS [6, 7], namely “item 3.8” (leg
agility), “item 3.9” (arising from chair), “item 3.10” (gait), and “item
3.13” (posture), as shown in Figure 1. To facilitate the execution of
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the tests for PD patients, as well the motion capturing procedure,
patients were instructed to perform four motor tests. The MDS-
UPDRS guidelines were followed as closely as possible; however,
some minor changes were inevitably required, as in a self-test case,
the patient may have to capture the video alone, without support
from a carer or physician. The following outlines the description of
the four items encompassed within the proposed Comprehensive
Motor Function Test (CMFT):

• Leg agility (item 3.8): Initially, the patient should sit in a
straight-backed chair with arms and has both feet comfort-
ably on the floor. The patient should then raise and stomp
each foot (first the left foot and then the right) on the ground
10 times as high and as fast as possible.

• Arising from chair (item 3.9): Then the patient should cross
his/her arms across the chest and try to stand up. If the pa-
tient is not successful, s/he should try to repeat this attempt
up to a maximum of two more times, and if s/he is still un-
successful, he/she can try to push off using her/his hands on
the arms of the chair.

• Posture (item 3.13): After the patient stands up, s/he is asked
to stand still for 5 seconds, so that her/his posture can be
assessed.

• Gait (item 3.10): After completing the posture test, the patient
should take 3 steps away from the chair, then turn around
and return towards the chair, taking again 3 steps. Although
the original MDS-UPDRS test requires the patient to walk for
at least 10m, this test was adapted due to the limited field of
view of the camera in the selected camera set-up, described
below.

The video recording of the PD patient executing the CMFT de-
scribed above can be conducted either by the PD patients themselves
(self-capture) or with assistance from another individual, such as a
family member or caregiver. An overview of the proposed approach
is illustrated in Figure 2.

More specifically, the video recording of the patient performing
an MDS-UPDRS item is first split into individual frames followed by
a 3D Pose Landmark detection in each frame. Based on the detected
landmark locations, a set of angles between specific body joints
are computed for each frame, yielding a set of angle time-series.
The next steps include a) preprocessing of these time-series, b) fea-
ture extraction, c) selection of features that exhibit high correlation
with the provided medical assessment and, finally, d) a Machine
Learning classifier that has been trained to yield an estimated as-
sessment score. These steps are further elaborated in the following
subsections.

3.1 Video analysis
The video of each PD patient is first automatically processed to
extract relevant angle time series. More specifically, the video is
first split into individual frames and then in each frame a set of body
landmark locations (e.g. joints) are identified (Figure 1). Towards
this goal, the MediaPipe Pose Landmarker task of the latest version
of Google MediaPipe software was used to identify 33 key 3-D
body locations (“pose landmarks”). According to the MediaPipe
documentation [28], the software uses a variant of the BlazePose
model based on GHUM, a 3D human shape modeling pipeline,

to estimate the full 3D body pose of an individual in images or
videos. The model employs a convolutional neural network similar
to MobileNetV2 and is optimized for on-device, real-time fitness
applications.

In this work, we opted for features based exclusively on angles
formed between specific joints (skeleton bones), so as to decrease
dependency on factors such as a) camera angle, b) distance of patient
from the camera, and c) human body size/shape variations. Hence,
for each assessment item, a set of relevant angles were identified,
as shown in Table 1. These angles were computed in each frame
from the detected 3-D coordinates of the indicated joints(bones).

Table 1: Angles used as features for each item included in the
CMFT

Item Angle(s) used

3.8L(left foot) KNEE_L (HIP_L-KNEE_L and KNEE_L-
ANKLE_L bones)

3.8R(right foot) KNEE_R (HIP_R-KNEE_R and KNEE_R-
ANKLE_R bones)

3.9 HIP_C (SHOULDER_C-HIP_C and HIP_C-
KNEE_C bones)

3.13 HIP_C (SHOULDER_C-HIP_C and HIP_C-
KNEE_C bones)

3.10F(forward),
3.10B(backwards)

BETWEEN_LEGS (HIP_C-KNEE_L
and HIP_C-KNEE_R bones),
SHOULDER_L(HIP_L-SHOULDER_L
and SHOULDER_L-ELBOW_L bones),
SHOULDER_R(HIP_R-SHOULDER_R and
SHOULDER_R-ELBOW_R bones)

3.2 Preprocessing and feature extraction
As described in subsection 3.1, the video analysis pipeline yields a
set of angle time series for each assessment item, which are then
preprocessed and used to compute a set of features that may have
correlations with the corresponding clinical scores. Regarding pre-
processing, a low-pass filter was used to remove high frequencies,
thus compensating both for a) MediaPipe pose detection errors,
and b) any kinetic tremor effects that, according to the physicians,
should not affect the UPDRS score. Since the video frame rate used
is 30 fps, an optimal cutoff value of 8Hz was determined experimen-
tally, as it was seen to provide improved estimation results. Also,
for normalization purposes, the mean value (DC term) is subtracted
from each time series.

A set of 27 features are then computed, as summarized and
categorised in Table 2, from each of these time series. More specifi-
cally, the first three categories include simple features computed
directly from the time series, such as the minimum. maximum,
mean, standard deviation, median, range (i.e., max-min) and in-
terquartile range. In addition, similar features are extracted from
the first and second derivatives of each time series, i.e., the angular
speed and acceleration, respectively. Five additional features are ob-
tained after transforming the time series in the frequency domain,
namely i) the dominant frequency, ii) the corresponding dominant
frequency magnitude, iii) the dominant frequency ratio (i.e., ratio of
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Figure 1: The proposed CMFT including the MDS-UPDRS items for assessing motor skills: item 3.8 (Leg agility), item 3.9 (Arising
from chair), item 3.10 (Gait), and item 3.13 (Posture).

Figure 2: Overview of the proposed motor skill assessment approach

Table 2: Features (27 in total) that are computed from each
angle time series

Category Features

Angle features (5) Min, max, mean, standard deviation (SD),
range (i.e., max-min)

Speed features (6) Min, max, mean, standard deviation (SD),
median, interquartile range (iqr)

Acceleration fea-
tures (6)

Min, max, mean, standard deviation (SD),
median, interquartile range (iqr)

Frequency domain
features (3)

Dominant frequency, dominant fre-
quency magnitude, dominant frequency
ratio

Spectral features (2) Spectral entropy, spectral flatness
Additional angle
features (5)

signal_rms (root mean square),
signal_entropy, jerk_metric,
iqr_of_autocovariance, mean_cross_rate

energy in the dominant frequency component to the total energy of
the signal), iv) spectral entropy (obtained from the power spectrum

using the standard formula for entropy calculation), and v) the
spectral flatness (calculated by dividing the geometric mean of the
power spectrum by the arithmetic mean of the power spectrum). Fi-
nally, five additional angle features that measure signal complexity
are used, i.e., i) the rms (root mean square), ii) entropy (using the
standard formula for entropy calculation), iii) a jerk metric, iv) the
interquartile range of the angle autocovariance, and v) the mean
(zero) cross rate. Note that for gait items, where features from three
time series are extracted (see Table 2), the corresponding three
feature vectors are concatenated together.

3.3 Feature selection and ML classification
Given the feature vectors computed for each item, as described in
the previous section, the objective is to train different ML classi-
fiers to accurately predict the clinical assessment scores provided
by the expert physicians. Five ML classifiers were trained for this
Task, namely i) K-Nearest Neighbours (KNN), ii) Support Vector
Machines (SVM), iii) Random Forest (RF), iv) PCA+KNN, and v)
sPCA(Supervised PCA, [29])+KNN. The Leave-One-Out cross vali-
dation approach was used however, as initial results from all classi-
fiers were not satisfactory, an additional feature selection step was
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employed to identify a subset of𝑁 features that have the largest cor-
relation with the corresponding clinical scores. This additional step
was seen to significantly improve performance for all ML classifiers.
Furthermore, a grid search procedure was employed to optimise im-
portant hyper-parameters in each ML classifier, resulting to further
performance gains.

4 EXPERIMENTAL RESULTS
4.1 Study participants
A cohort of 32 Greek PD patients from the “Thessaloniki Parkinson
Patients and Friends Association” (Greece) voluntarily participated
in this study. All participants signed a consent form in order to
participate in the study. We have recorded these PD patients as
they performed the Comprehensive Motor Function Test, however
15 of these recordings were discarded due to various reasons (e.g.,
camera setup different that the one described, patient moved outside
the field of view, freezing of gait, etc.), yielding 17 valid videos
for our experiments. Regarding the cohort demographics for the
final cohort of patients used, there were 5 female participants (age:
71.4±5 years, mean disease duration 17.4 years) and 12 male (age:
72.1±8.9 years, , mean disease duration 9.2 years). Two independent,
annotations for these videos (for each motor item) were provided by
two expert physicians from the Thessaloniki Papanikolaou Hospital
(Greece).

4.2 Experimental setup
Within AI-PROGNOSIS framework, a smartphone application (sup-
porting Android and iOS devices) will be developed for monitoring
different PD symptoms and/or tracking of key PD progression
markers in daily living. This mobile app will include a module
and Graphical User Interface (GUI) to assist the user in perform-
ing the capture of the video to assess progression of these motor
tests. However, since this module is currently under development,
all videos using the smartphone camera app were captured after
placing the smartphone on a static location (e.g., tripod). In order
to maximise the field of view, we used an angle of approximately
45𝑜 between the camera axis and the movement of the patient, as
shown in Figure 3. Although it is possible to record one video for
each assessment item, in this work, we recorded instead a single
video that includes the sequence of all items in the following order:
3.8L(left foot), 3.8R(right foot), 3.9, 3.13, 3.10F(forward), 3.10T(turn),
3.10B(backwards). This simplifies the recording procedure, also
making it easier for the PD patients, but requires an additional seg-
mentation step, where each recorded video is split into segments
corresponding to each item by manually identifying the first and
last frame of each segment.

4.3 Results
Figure 4(a-b) illustrates the computed knee angle time series for item
3.8L (left leg agility) for two PD patients with different assessment
item scores (1 vs. 3). As seen, there is a significant difference in
motion smoothness: slowing and interruptions of movement can
be observed in Figure 4(b), which are also important cues used by
physicians for clinical assessment.

Figure 3: Video Capture setup

Table 3 presents the average weighted F1 scores for all assess-
ment items and ML classifiers using Leave One Out cross valida-
tion. As explained in Subsection s:MLclassifier, a feature selection
approach was used in all cases to select features with highest corre-
lation with the clinical scores (an optimal number of three features
(𝑁 = 3) was experimentally determined to maximise performance,
except for gait assessment items 3.10F and 3.10B where we use
𝑁 = 9). For instance, for item 3.8L, the three features selected were
speed SD, speed iqr and speed min, all having correlation factors
higher than 0.75. This feature selection is in line with the cor-
responding clinical assessment criteria (evaluation of any speed
variations, such as slowing or interruptions). As seen from Table
3, best results for most items are obtained using the KNN (Near-
est Neighbor) approach (where optimal 𝐾 values is usually 2 or
3). Results for gait assessment (items 3.10F and 3.10B), where the
complex movement of both the legs and arms needs to be assessed,
seem to have further room for improvement. Hence, calculation of
additional gait features, such as step duration, swing phase duration
[30], may be considered in the future.

3.8L 3.8R 3.9 3.13 3.10F 3.10B

KNN 0.755 0.676 0.748 0.812 0.520 0.677
SVM 0.686 0.546 0.741 0.750 0.526 0.640
RF 0.698 0.496 0.677 0.750 0.544 0.542

PCA+KNN 0.755 0.588 0.678 0.812 0.541 0.629
sPCA+KNN 0.755 0.588 0.678 0.812 0.515 0.627

Table 3: Average weighted F1 scores for different assessment
items andML classifiers using Leave OneOut cross validation.
Best performing ML classifiers for each item are shown in
bold.

5 CONCLUSIONS
Parkinson’s disease (PD) is one of the most prevalent neurodegen-
erative diseases and the accurate identification of its motor symp-
toms is considered crucial for optimizing treatment and further
clinical decisions. The proposed CMFT approach involves utilizing
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(a)

(b)

Figure 4: Plots of KNEE_L angle time series for item 3.8L cor-
responding to two PD patients with different clinical assess-
ment scores. Peaks correspond to the extreme leg positions
during each of the 10 foot stomps.

smartphone-based video analysis to assess motor skills, focusing on
aspects, such as balance and posture, in individuals with PD. The
study used a cohort of 17 volunteer PD patients and captured videos
of them performing a sequence of four items from the MDS-UPDRS
motor tests. Based on video analysis using the MediaPipe software,
we detect 3D pose landmarks in each frame and create time series
of angles that are relevant to each item. We then compute a set
of motion features based on these time series and identify those
that have significant correlation with the corresponding clinical
MDS-UPDRS ratings. Using these features, different ML classifiers
are trained and evaluated for monitoring the balance and posture
of PD patients based on standard smartphone video recordings.
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